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Let H be the class of complex-valued harmonic functions in the unit disk |z| < 1 and H1 the set of all functions
f ∈ H such that f (0) = 0, fz (0) = 1 and fz (0) = 0. For V ⊂ H1 , its dual V ∗ is

V ∗ = {g ∈ H1 : (f ∗ g)(z) �= 0 for all 0 < |z| < 1, f ∈ V },

where ∗ denotes the Hadamard product for harmonic functions. The set V is a dual class if V = W ∗ for some
W ⊂ H1 . In the present paper, the duality principle is extended to H1 by means of the Hadamard product.
Counterparts of the dual classes are introduced and their structural properties studied.
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1 Introduction and main results

Let DR = {z : |z| < R} be an open disk in the complex plane C and for brevity, let D = D1 , and Ď = D\{0}.
Denote by H(DR ) the class of complex-valued harmonic functions f = u + iv in DR , where u and v are real-
valued harmonic functions in DR . In particular, H = H(D) and let H be the class of harmonic functions in the
closed disk D, that is, H =

⋂
R>1 H(DR ). As in [2, p. 38], it can be shown that H(DR ) is a metrizable topological

linear space with the topology of locally uniform convergence in DR .

Each f ∈ H(DR ) has the representation f(z) = φ(z) + ψ(z), where φ and ψ are analytic in DR of the form

φ(z) =
∞∑

n=0

an (φ)zn and ψ(z) =
∞∑

n=1

an (ψ)zn ,

and both series being absolutely convergent for |z| < R. Here φ and ψ are respectively referred to as the analytic
and co-analytic parts of f . For f = φ + ψ ∈ H(DR ) and g = Φ + Ψ ∈ H(DR ), the convolution (or Hadamard
product) of f and g is f ∗ g defined by

(f ∗ g)(z) =
∞∑

n=0

an (φ)an (Φ)zn +
∞∑

n=1

an (ψ)an (Ψ)zn .

Clearly, the operation ∗ is commutative. When f and g are analytic, the definition f ∗ g coincides with the
convolution of analytic functions, of which the literature is vast [8] (see also [4], [5]). In the following, for
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f ∈ H(DR ), it is convenient to use the compact form

f(z) =
∞∑

k=−∞
ak (f)pk (z) =

( ∞∑

k=0

ak (f)zk

)

+

( ∞∑

k=1

a−k (f)zk

)

,

where pk (z) = zk , p−k (z) = zk for k ≥ 0. In this form, for f(z) =
∑∞

k=−∞ ak (f)pk (z) and g(z) =
∑∞

k=−∞ bk (g)pk (z) in H(DR ), f ∗ g can be written in the equivalent form

(f ∗ g)(z) =
∞∑

k=−∞
ak (f)bk (g)pk (z) =

1
2π

∫ 2π

0
f
(
ρeit

)
g
(
zρ−1e−it

)
dt, |z| < ρ < R.

In particular, the unit element for H(DR ), R ≤ 1, is

e(z) =
∞∑

k=−∞
pk (z) =

1
1 − z

+
z

1 − z
=

1 − |z|2
|1 − z|2 ,

whereas for R > 1 there is no such element.
Consider now the following subclasses of normalized complex-valued harmonic functions:

H0 = {f ∈ H : a0(f) = 1}, and

H1 = {f ∈ H : a0(f) = a1(f) − 1 = a−1(f) = 0}.

Note that H1 reduces to the class of normalized analytic functions when the co-analytic part of f is identically zero
in the unit disk. In [1], Clunie and Sheil-Small introduced and studied various subclasses of H1 , particularly uni-
valent functions (convex, starlike, close-to-convex) from H1 . For the purpose of applications to complex-valued
harmonic univalent functions, the results of this paper are stated for the class H1 . However, all the assertions
obtained remain valid (with appropriate changes) for the class H0 .

The space Λ of all complex-valued continuous (with respect to the compact convergence in D) linear function-
als on H plays an important role in the statement of our results. Let λ ∈ Λ and f(z) =

∑∞
k=−∞ ak (f)pk (z) ∈ H.

Then

λ(f) :=
∞∑

k=−∞
ak (f)λ(pk ) =

∞∑

k=−∞
ak (f)ck

and, according to Toeplitz [10], the sequence {ck} generates such a functional if and only if the corresponding
series g(z) =

∑∞
k=−∞ ckpk (z) has a radius of convergence greater than 1. In addition,

λ(f) := (g ∗ f)(1) = lim
z→1

1
2π

∫ 2π

0
g
(
eit

)
f
(
ze−it

)
dt.

More precisely, the following lemma (cf. [10]) characterizes continuous linear functionals on H.

Lemma 1.1 A complex-valued functional λ on H is continuous and linear if and only if there exists a function
g ∈ H such that λ(f) = (f ∗ g)(1) for all f ∈ H.

In the sequel we shall denote by λ := g the correspondence between λ and g as described in Lemma 1.1. In
fact, Lemma 1.1 can be proved by a reasoning similar to that in [2, pp. 42–43].

Ruscheweyh introduced the notions of the dual and dual hulls for classes of analytic functions. In [6], [7], a
certain analogy was established between the duals and dual hulls on one side, and the adjoint and the second
adjoint spaces, on the other. In some interesting cases the second dual class proves to be surprisingly large and, as
a consequence, many new as well as already known facts fall into a simple pattern. In particular, Ruscheweyh’s
approach (see [6], [7]) is useful for numerous applications in geometric function theory and even beyond. In the
present paper, this technique is extended to the case of harmonic functions, and certain properties of the relevant
notions are studied under this new setting.
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For V ⊂ H1 , define its dual V ∗ as

V ∗ =
{
g ∈ H1 : (f ∗ g)(z) �= 0 for all z ∈ Ď, f ∈ V

}
.

We say that V is a dual class if V = W ∗ for some W ⊂ H1 . A number of basic properties of dual class can
be observed. For example, it is easy to see that V ⊂ H1 is a dual class if and only if V = V ∗∗, the latter being
defined as V ∗∗ = (V ∗)∗. Evidently, V ∗∗ is the smallest dual class containing V, so it is called the dual hull of V.
For V ⊂ H1 and U ⊂ H1 , we define V � and U⊥ respectively by

V � = {g ∈ H1 : (f ∗ g)(1) �= 0 for all f ∈ V },

and

U⊥ = {h ∈ H1 : (g ∗ h)(1) �= 0 for all g ∈ U},

where H1 is the class of functions in H1 that are harmonic in the closed disk D. In accordance with a definition
from [6], a subclass V of H1 is called complete, provided that Pxf ∈ V for any f ∈ V and any x ∈ D, where
(Pxf)(z) = f(xz)/x for x �= 0 and (P0f)(z) = z. Finally, the complete hull of V is defined by

V ′ :=
⋃

x∈D

PxV =
{
Pxf : f ∈ V, x ∈ D

}
,

which is the smallest of all complete sets containing V. Observe that for each V ⊂ H1 there holds (V ′)∗ = V ∗,
and for a compact V , the set V ′ is also compact.

Our main results are stated in the following theorems. Their counterparts for the analytic case were proved
by Nezhmetdinov [3]. However, a representation V ∗ = (V ′)�, also established there, in general fails for the
harmonic case. Indeed, if we take V = {e(z)} ⊂ H0 , then the sequence {fn}n≥1 of functions defined by

fn (z) = 1 +
n

n + i
(z + z)

lies in V ∗, whereas its limit function f(z) = 1 + z + z does not. This example also shows that V ∗ is not closed,
unlike the analytic case.

Theorem 1.2 Let V be a compact subset of H1 and V � be complete. Then λ(V ) = λ(V ∗∗) for each λ ∈ Λ.
Moreover, f ∈ V ∗∗ if and only if λ(f) ∈ λ(V ) for all λ ∈ Λ.

Here λ(V ) stands for the set {λ(f) : f ∈ V }.

Theorem 1.3 Under the assumptions of Theorem 1.2, then V ∗∗ =
(
V �)⊥

.

Theorem 1.4 Let V ⊂ H1 be a compact set such that V � is complete. Then

V � =
⋃

0<r<1

Pr

(
V �)

=
⋃

0<r<1

Pr

[
(PrV )�

]
.

The proofs of Theorems 1.2–1.4, as well as their consequences, will be given in Section 3.

2 Preliminary lemmas

To begin with, several auxiliary assertions are established.

Lemma 2.1 Suppose that fn → f and gn → g, as n → ∞, in the spaces H(DR1 ) and H(DR2 ), respectively.
Then fn ∗ gn → f ∗ g, as n → ∞, in H(DR1 R2 ).

P r o o f. Let z ∈ Dρ , 0 < ρ < R1R2 . Choose ρ1 , ρ2 ∈ (0, 1) such that ρ1 < R1 , ρ2 < R2 and ρ < ρ1ρ2 <

R1R2 . Since fn → f as n → ∞ in H(DR1 ), we deduce that this sequence converges uniformly to f in Dρ1 , and,
in particular, it is uniformly bounded on Dρ1 . Therefore, Cauchy inequalities for the coefficients yield

|a±k (f)| ≤ M1ρ
−k
1 , (2.1)

|a±k (fn ) − a±k (f)| ≤ ε1,n ρ−k
1 , for all n ≥ 1, k ≥ 0, (2.2)
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where M(r, f) = sup|z |=r |f(z)|, M1 = M(ρ1 , f) is some positive constant, ε1,n = M(ρ1 , fn − f) and
ε1,n → 0, n → ∞. In a similar way,

|a±k (gn )| ≤ M2ρ
−k
2 and |a±k (gn ) − a±k (g)| ≤ ε2,n ρ−k

2 for n ≥ 1, k ≥ 0, (2.3)

where M2 = M(ρ2 , g) and ε2,n = M(ρ2 , gn − g) → 0 as n → ∞. From the estimates (2.1)–(2.3), for all
z ∈ Dρ , it follows that

|(fn ∗ gn )(z) − (f ∗ g)(z)| ≤
∞∑

k=−∞

∣
∣ak (fn )ak (gn ) − ak (f)ak (g)

∣
∣ρ|k |

=
∞∑

k=−∞

∣
∣ak (fn − f)ak (gn ) + ak (f)ak (gn − g)

∣
∣ρ|k |

≤
∞∑

k=−∞

[
ε1,n

ρ
|k |
1

M2

ρ
|k |
2

+
ε2,n

ρ
|k |
2

M1

ρ
|k |
1

]

ρ|k |

= (ε1,nM2 + ε2,nM1)
ρ1ρ2 + ρ

ρ1ρ2 − ρ
.

Since the last expression tends to 0 as n → ∞, the proof is complete.

Lemma 2.2 Let V ⊂ H(DR1 ) be compact, g ∈ H(DR2 ) and U = {g ∗ f : f ∈ V }. Then U is compact in
H(DR1 R2 ).

P r o o f. Note that for any sequence {g ∗ fn} in U, in view of the compactness of V, a subsequence fnk
can be

chosen to converge to some f ∈ V in H(DR1 ). From Lemma 2.1, it follows that g ∗fnk
→ g ∗f ∈ U as k → ∞,

which shows that U is compact.

Lemma 2.3 Let V be a compact set in H(DR ), R > 1, such that f(1) �= 0 for all f ∈ V. Then there exists a
real number σ ∈ (1, R) with f(σ) �= 0 for all f ∈ V.

P r o o f. Assume the contrary. Then there is a sequence {xn}n≥1 of real numbers converging to 1 such that
1 < xn+1 < xn < R, for all n ≥ 1. Moreover, given an index n ≥ 1, a function fn ∈ V can be found with
fn (xn ) = 0. Since V is compact, we may assume without loss of generality that fn → f ∈ V in H(DR ).
Consider a sequence {gn (z)}n≥1 of functions defined by

gn (z) =
1

1 − xnz
+

xn z̄

1 − xn z̄
.

Clearly, gn ∈ H(D1/x1 ). Moreover, it is easy to show that

gn (z) −→ e(z) =
1

1 − z
+

z̄

1 − z̄
=

1 − |z|2
|1 − z|2 ∈ H

(
D1/x1

)
as n −→ ∞,

and therefore, it follows from Lemma 2.1 that fn ∗ gn → f ∗ e = f in H
(
DR/x1

)
. In particular,

fn (xn ) = (fn ∗ gn )(1) −→ f(1) as n −→ ∞,

whence f(1) = 0, contrary to the hypotheses of the lemma.

Lemma 2.4 Let V ⊂ U ⊂ H1 , and for each λ ∈ Λ with λ := g, assume that a1(g) ∈ λ(V ). Then the
following assertions are equivalent:

(a) λ(U) = λ(V ) for all λ ∈ Λ;
(b) 0 /∈ λ(V ) =⇒ 0 /∈ λ(U) for all λ ∈ Λ;
(c) U� = V �.
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P r o o f. As the implication (a) ⇒ (b) is trivially true, we first show that (b) ⇒ (c). Let g ∈ V � and λ := g.
Then, by the definition of λ(V ), the assumption (b) shows that λ(f) = (f ∗ g)(1) �= 0 for all f ∈ V, that is,
0 /∈ λ(V ) and 0 /∈ λ(U). Now for each f ∈ U yields (g ∗ f)(1) �= 0, so that g ∈ U�. The other inclusion
U� ⊂ V � being obvious yields U� = V �.

Finally, we show that (c) ⇒ (a). Fix a functional λ ∈ Λ such that λ := g. It suffices to prove that λ(U) ⊂ λ(V ).
Assume that w ∈ C \ λ(V ) and so w �= a1(g). For f ∈ V ,

λ(f) − w = {[g(z) − wz] ∗ f(z)}(1) �= 0,

and therefore

g(z) − wz

a1(g) − w
∈ V � = U�.

Equivalently, w /∈ λ(U) and thus, λ(U) ⊂ λ(V ).

Remark 2.5 The condition (b) in Lemma 2.4 for U = V ′ coincides with the condition (ii′) from [6, p. 64].
We next show that for a compact class V the additional assumption a1(g) ∈ λ(V ) may be omitted.

Lemma 2.6 Let V ⊂ H1 be compact, and (V ′)� = V �. If λ ∈ Λ with λ := g, then a1(g) ∈ λ(V ).

P r o o f. This lemma is proved by contradiction. Assume that a1(g) /∈ λ(V ) for some λ ∈ Λ with λ := g.
Obviously, the set λ(V ) ⊂ C is compact, and therefore an ε > 0 can be found such that D(a1(g), ε)∩λ(V ) = ∅.
Now, if w ∈ D(a1(g), ε), w �= a1(g), then, by reasoning as in the proof of Lemma 2.4, we deduce that w �∈ λ(V ′).
Thus, for all f ∈ V and x ∈ D \{0},

w �= λ(Pxf) =
(g ∗ f)(x)

x

and

a1(g) = lim
x→0

(g ∗ f)(x)
x

.

The latter is an isolated point of the image of D mapped by the function F (z) = (g ∗ f)(z)/z for each fixed
f ∈ V. In fact, since F admits a continuous extension to the whole disk D, it must be constant. Thus,

λ(f) = (g ∗ f)(1) = a1(g),

contrary to the original assumption.

Furthermore, note that V � is complete if and only if V � = (V ′)�. Indeed, if V � is complete, then Pxg ∈ V �

whenever g ∈ V � and x ∈ D. This observation shows that

(Pxg ∗ f)(1) = (g ∗ Pxf)(1) �= 0 for each f ∈ V , (2.4)

whence g ∈ (V ′)�. Clearly, V ⊂ V ′ and from (2.4) it follows that V � = (V ′)�. Conversely, if the latter equality
holds, then, in view of the condition (2.4), we conclude that g ∈ V � implies Pxg ∈ V � for all x ∈ D.

3 Proofs of the main results and consequences

P r o o f o f T h e o r e m 1.2. By virtue of Lemmas 2.4 and 2.6, in order to prove the first assertion of
Theorem 1.2, it suffices to verify the inclusion V � ⊂ (V ∗∗)�. Let g ∈ V � = (V ′)�. Then g ∈ H(DR ) for
some R > 1, and (g ∗ f)(1) �= 0 for each function f ∈ V ′. By the compactness of V ′ in H, it is evident from
Lemmas 2.2 and 2.3 that for some σ, 1 < σ < R, the inequality (g ∗ f)(σ) �= 0 holds for all f ∈ V ′. Next, let
h = Pσg, so that h ∈ H ∩H1 and (h ∗ f)(1) �= 0 for each f ∈ V ′. Thus h ∈ (V ′)� and it is easily verified that
h ∈ V ∗. Therefore, for an arbitrary k ∈ V ∗∗,

(g ∗ k)(1) = (P1/σh ∗ k)(1) = σ(h ∗ k)(1/σ) �= 0,

whence g ∈ (V ∗∗)�.
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Now, we proceed to the proof of the second part of Theorem 1.2. As shown above, λ(V ) = λ(V ∗∗) for all
λ ∈ Λ and from f ∈ V ∗∗, it follows that λ(f) ∈ λ(V ).

Conversely, let λ(f) ∈ λ(V ) for λ ∈ Λ. Taking an arbitrary g ∈ V ∗ and z ∈ Ď, consider the functional
λz := Pzg. It follows that

λz (f) = (Pzg ∗ f)(1) =
(g ∗ f)(z)

z
�= 0 for all z ∈ Ď

and thus, f ∈ V ∗∗.

P r o o f o f T h e o r e m 1.3. Let h ∈ V ∗∗, g ∈ V � and λ := g. Then, for each f ∈ V,

λ(f) = (g ∗ f)(1) �= 0, that is, 0 /∈ λ(V ).

By Theorem 1.2, λ(h) ∈ λ(V ) so that 0 �= λ(h) = (g ∗ h)(1) and therefore, h ∈ (V �)⊥.
On the other hand, if h ∈ (V �)⊥, g ∈ V ∗ and z ∈ Ď, then it is clear that Pzg ∈ V �. But then

(Pzg ∗ h)(1) =
(g ∗ h)(z)

z
�= 0 for each g ∈ V ∗, and all z ∈ D.

Therefore, h ∈ V ∗∗.

Corollary 3.1 Under the conditions of Theorem 1.2, then

V ∗∗ =
⋂

λ∈Λ

λ−1 [λ(V )] =
⋂

λ∈Λ

(V + ker λ),

where λ−1(A) denotes the inverse image of the set A with respect to λ. Here A + B stands for the algebraic sum
of the sets A and B, namely,

A + B = {x + y : x ∈ A, y ∈ B},

and ker λ is the kernel of the functional λ defined by ker λ = {f ∈ H : λ(f) = 0}.

P r o o f. According to Theorem 1.2, f ∈ V ∗∗ is equivalent to the fact that λ(f) ∈ λ(V ) for each λ ∈ Λ,
which, in turn, is equivalent to f ∈ λ−1 [λ(V )] for each λ ∈ Λ and therefore, the first equality is proved.

Now, if f ∈ λ−1 [λ(V )] then there exists a function g ∈ V satisfying λ(g) = λ(f). Thus, for h = f − g, then
λ(h) = λ(f)− λ(g) = 0 and so, h ∈ ker λ. Therefore, f = g + h ∈ V + ker λ. On the other hand, if f = g + h,
where g ∈ V and h ∈ ker λ, then λ(f) = λ(g) ∈ λ(V ).

Remark 3.2 If V ⊂ H1 is a compact dual class, then V =
⋂

λ∈Λ λ−1 [λ(V )]. A similar representation is valid
for an arbitrary compact convex set in a locally convex space X . However, in this case, Λ should be replaced by
the space of all real-valued continuous linear functionals on X , see [9, p. 88].

Corollary 3.3 If U, V ⊂ H1 are compact and U�, V � are complete classes, then the following relations are
equivalent:

(a) U∗∗ = V ∗∗

(b) U� = V �

(c) U∗ = V ∗.

P r o o f. To begin with, assume that the relation (a) holds. Let g ∈ U� with λ := g. It follows from
Theorem 1.2 that

0 /∈ λ(U) = λ(U∗∗) = λ(V ∗∗) = λ(V ),

and so, g ∈ V �. Thus U� ⊆ V �. The opposite inclusion is proved in a similar way. Thus, (a) ⇒ (b) holds.
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Next, we show the implication (b) ⇒ (c). Suppose that (b) is valid, and g ∈ V ∗. Then, for each f ∈ V and for
all z ∈ Ď,

0 �= (g ∗ f)(z)
z

= (Pzg ∗ f)(1)

so that Pzg ∈ V � = U�. Now the previous inclusion holds for an arbitrary f ∈ U, showing that g ∈ U∗, that is,
V ∗ ⊆ U∗. By reversing the argument, it follows that (b) ⇒ (c).

The implication (c) ⇒ (a) is obvious, and this completes the proof.

P r o o f o f T h e o r e m 1.4. Since V � is complete, each r ∈ (0, 1) yields Pr (V �) ⊂ V �, and therefore
⋃

0<r<1

Pr (V �) ⊂ V �.

Let g ∈ V �. Then g ∈ H(DR ) for some R > 1, and (g ∗ f)(1) �= 0 for all f ∈ V.
By virtue of Lemmas 2.2 and 2.3, there exists a positive real number σ ∈ (1, R) such that (g ∗ f)(σ) �= 0 for

all f ∈ V. Setting h = Pσg (so that h ∈ H) yields

(h ∗ f)(1) = (g ∗ f)(σ)/σ �= 0 for all f ∈ V ,

and therefore h ∈ V �. Thus,

g = P1/σh ∈
⋃

0<r<1

Pr

(
V �)

.

To prove the second equality, fix g ∈ V � and r ∈ (0, 1). By the completeness of V �, we deduce that
(g ∗ Prf)(1) �= 0 for all f ∈ V , and therefore, g ∈ (PrV )�.

Now, the inclusion V � ⊂ (PrV )� yields Pr

(
V �)

⊂
[
Pr (PrV )�

]
, and thus,

V � =
⋃

0<r<1

Pr

(
V �)

⊂
⋃

0<r<1

Pr

[
(PrV )�

]
.

On the other hand, if g belongs to the right-hand side of the above inclusion, then g ∈ Pr

[
(PrV )�

]
for some

r ∈ (0, 1) showing that g = Prh, with h ∈ (PrV )�. Clearly, g ∈ H ∩H1 , and

(h ∗ Prf)(1) = (Prh ∗ f)(1) �= 0 for all f ∈ V.

Consequently, g ∈ V �.
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